Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 124(5): 2553-2582, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38476077

RESUMO

The intricate and complex features of enzymatic reaction networks (ERNs) play a key role in the emergence and sustenance of life. Constructing such networks in vitro enables stepwise build up in complexity and introduces the opportunity to control enzymatic activity using physicochemical stimuli. Rational design and modulation of network motifs enable the engineering of artificial systems with emergent functionalities. Such functional systems are useful for a variety of reasons such as creating new-to-nature dynamic materials, producing value-added chemicals, constructing metabolic modules for synthetic cells, and even enabling molecular computation. In this review, we offer insights into the chemical characteristics of ERNs while also delving into their potential applications and associated challenges.

2.
Nat Commun ; 15(1): 1602, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383500

RESUMO

Kinetic modeling of in vitro enzymatic reaction networks is vital to understand and control the complex behaviors emerging from the nonlinear interactions inside. However, modeling is severely hampered by the lack of training data. Here, we introduce a methodology that combines an active learning-like approach and flow chemistry to efficiently create optimized datasets for a highly interconnected enzymatic reactions network with multiple sub-pathways. The optimal experimental design (OED) algorithm designs a sequence of out-of-equilibrium perturbations to maximize the information about the reaction kinetics, yielding a descriptive model that allows control of the output of the network towards any cost function. We experimentally validate the model by forcing the network to produce different product ratios while maintaining a minimum level of overall conversion efficiency. Our workflow scales with the complexity of the system and enables the optimization of previously unobtainable network outputs.

3.
Angew Chem Int Ed Engl ; 63(6): e202316621, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100204

RESUMO

Complex reaction mixtures, like those postulated on early Earth, present an analytical challenge because of the number of components, their similarity, and vastly different concentrations. Interpreting the reaction networks is typically based on simplified or partial data, limiting our insight. We present a new approach based on online monitoring of reaction mixtures formed by the formose reaction by ion-mobility-separation mass-spectrometry. Monitoring the reaction mixtures led to large data sets that we analyzed by non-negative matrix factorization, thereby identifying ion-signal groups capturing the time evolution of the network. The groups comprised ≈300 major ion signals corresponding to sugar-calcium complexes formed during the formose reaction. Multivariate analysis of the kinetic profiles of these complexes provided an overview of the interconnected kinetic processes in the solution, highlighting different pathways for sugar growth and the effects of different initiators on the initial kinetics. Reconstructing the network's topology further, we revealed so far unnoticed fast retro-aldol reaction of ketoses, which significantly affects the initial reaction dynamics. We also detected the onset of sugar-backbone branching for C6  sugars and cyclization reactions starting for C5  sugars. This top-down analytical approach opens a new way to analyze complex dynamic mixtures online with unprecedented coverage and time resolution.

4.
Angew Chem Int Ed Engl ; 62(7): e202215759, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36562219

RESUMO

Living systems use enzymatic reaction networks to process biochemical information and make decisions in response to external or internal stimuli. Herein, we present a modular and reusable platform for molecular information processing using enzymes immobilised in hydrogel beads and compartmentalised in a continuous stirred tank reactor. We demonstrate how this setup allows us to perform simple arithmetic operations, such as addition, subtraction and multiplication, using various concentrations of substrates or inhibitors as inputs and the production of a fluorescent molecule as the readout.


Assuntos
Enzimas Imobilizadas , Hidrogéis , Enzimas Imobilizadas/química
5.
Anal Chem ; 94(20): 7311-7318, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549162

RESUMO

In order to create artificial enzymatic networks capable of increasingly complex behavior, an improved methodology in understanding and controlling the kinetics of these networks is needed. Here, we introduce a Bayesian analysis method allowing for the accurate inference of enzyme kinetic parameters and determination of most likely reaction mechanisms, by combining data from different experiments and network topologies in a single probabilistic analysis framework. This Bayesian approach explicitly allows us to continuously improve our parameter estimates and behavior predictions by iteratively adding new data to our models, while automatically taking into account uncertainties introduced by the experimental setups or the chemical processes in general. We demonstrate the potential of this approach by characterizing systems of enzymes compartmentalized in beads inside flow reactors. The methods we introduce here provide a new approach to the design of increasingly complex artificial enzymatic networks, making the design of such networks more efficient, and robust against the accumulation of experimental errors.


Assuntos
Teorema de Bayes , Cinética , Incerteza
6.
Chemistry ; 26(7): 1676-1682, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31808965

RESUMO

Current efforts to design functional molecular systems have overlooked the importance of coupling out-of-equilibrium behaviour with changes in the environment. Here, the authors use an oscillating reaction network and demonstrate that the application of environmental forcing, in the form of periodic changes in temperature and in the inflow of the concentration of one of the network components, removes the dependency of the periodicity of this network on temperature or flow rates and enforces a stable periodicity across a wide range of conditions. Coupling a system to a dynamic environment can thus be used as a simple tool to regulate the output of a network. In addition, the authors show that coupling can also induce an increase in behavioural complexity to include quasi-periodic oscillations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...